a,Ta có:
$\left( {x - 7} \right)\sqrt {{x^2} - 5x + 4} = 2x - 14\left( {x \ge 4/hoac/x \le 1} \right)$
$ \leftrightarrow \left( {x - 7} \right)\left( {2 - \sqrt {{x^2} - 5x + 4} } \right) = 0$
$ \leftrightarrow \left[ \begin{array}{l}
x = 7 \\
{x^2} - 5x + 4 = 4 \\
\end{array} \right.$
$ \leftrightarrow \left[ \begin{array}{l}
x = 7 \\
x = 5 \\
x = 0 \\
\end{array} \right.\left( {thoa - man} \right)$
b,Đặt ${x^2} + x = t$
$ \to pt \leftrightarrow \sqrt {t + 4} + \sqrt {t + 1} = \sqrt {2t + 9} \left( {t \ge - 1} \right)$
$ \leftrightarrow 2t + 5 + 2\sqrt {\left( {t + 4} \right)\left( {t + 1} \right)} = 2t + 9$
$ \leftrightarrow 2\sqrt {{t^2} + 5t + 4} = 4$
$ \leftrightarrow {t^2} + 5t + 4 = 4$
$ \leftrightarrow t\left( {t + 5} \right) = 0$
$ \leftrightarrow \left[ \begin{array}{l}
t = 0 \\
t = - 5 \\
\end{array} \right. \leftrightarrow \left[ \begin{array}{l}
{x^2} + x = 0 \\
{x^2} + x + 5 = 0 \\
\end{array} \right. \leftrightarrow \left[ \begin{array}{l}
x = 0 \\
x = - 1 \\
\end{array} \right.\left( {thoa - man} \right)$