Ta có $$\dfrac1{4^n \cos^2 \dfrac{x}{2^n}} + \dfrac1{4^n \sin^2 \dfrac{x}{2^n}} = \dfrac{4^n(\cos^2 \dfrac{x}{2^n} + \sin^2 \dfrac{x}{2^n})}{4^n \cos^2 \dfrac{x}{2^n} \cdot 4^n \sin^2 \dfrac{x}{2^n}} = \dfrac{1}{4^{n} \cdot \dfrac14 \sin^2 \dfrac{2x}{2^n}} = \dfrac1{4^{n-1} \sin^2 \dfrac{x}{2^{n-1}}}$$
Tương tự: $$\dfrac1{4^{n-1} \cos^2 \dfrac{x}{2^{n-1}}} + \dfrac1{4^{n-1} \sin^2 \dfrac{x}{2^{n-1}}} = \dfrac1{4^{n-2} \sin^2 \dfrac{x}{2^{n-2}}}$$
$$\cdots$$
$$\dfrac1{4 \cos^2 \dfrac{x}{2}} + \dfrac1{4 \sin^2 \dfrac{x}{2}} = \dfrac1{4^0 \sin^2 \dfrac{x}{2^0}}$$
Cộng lại vế theo vế suy ra $VT + \dfrac1{4^n \sin^2 \dfrac{x}{2^n}} = \dfrac1{\sin^2 x}$ hay ta có đpcm