ta có a+b+c=2 \Rightarrow 0<a,b,c<2
a+b-c=2-2c >0,b+c-a=2-2a>0,c+a-b=2-2b>0
Theo BDT Côsi cho 3 số :
[TEX](1-a)(1-b)(1-c) \leq (\frac{1-a+1-b+1-c}{3})^3=(\frac{3-(a+b+c)}{3})^3=\frac{1}{27} \\ \Leftrightarrow 1-(a+b+c)+(ab+bc+ca)-abc \leq \frac{1}{27} \\ \Leftrightarrow 2(ab+bc+ca) \leq \frac{56}{27}+2abc \\ \Leftrightarrow [a^2+b^2+c^2+2(ab+bc+ca)]-(a^2+b^2+c^2) \leq \frac{56}{27}+2abc \\ \Leftrightarrow a^2+b^2+c^2+2abc \geq \frac{52}{57}[/TEX]
Dấu = xảy ra khi [TEX]a=b=c=\frac{2}{3}[/TEX]