[toán 10]Bất Đẳng Thức

T

tuyn

ta có a+b+c=2 \Rightarrow 0<a,b,c<2
a+b-c=2-2c >0,b+c-a=2-2a>0,c+a-b=2-2b>0
Theo BDT Côsi cho 3 số :
[TEX](1-a)(1-b)(1-c) \leq (\frac{1-a+1-b+1-c}{3})^3=(\frac{3-(a+b+c)}{3})^3=\frac{1}{27} \\ \Leftrightarrow 1-(a+b+c)+(ab+bc+ca)-abc \leq \frac{1}{27} \\ \Leftrightarrow 2(ab+bc+ca) \leq \frac{56}{27}+2abc \\ \Leftrightarrow [a^2+b^2+c^2+2(ab+bc+ca)]-(a^2+b^2+c^2) \leq \frac{56}{27}+2abc \\ \Leftrightarrow a^2+b^2+c^2+2abc \geq \frac{52}{57}[/TEX]
Dấu = xảy ra khi [TEX]a=b=c=\frac{2}{3}[/TEX]
 
Last edited by a moderator:
0

0915549009

Cho tam giác ABC có chu vi bằng 2.CMR:
a^2 + b^2 + c^2 + 2abc \geq [tex]\frac{52}{27}[/tex]


Giúp mình với!;););)
[TEX]9 abc \geq (a+b+c)[4(ab+bc+ca) -(a+b+c)^2] \Rightarrow 2abc \geq \frac{16}{9}(ab+bc+ca) - \frac{16}{9}[/TEX]
[TEX]a^2 + b^2 + c^2 + 2abc \geq a^2+b^2+c^2+\frac{16}{9}(ab+bc+ca) - \frac{16}{9} =(a+b+c)^2-\frac{16}{9} - \frac{2}{9}(ab+bc+ca) [/TEX]
[TEX]\geq 2^2-\frac{8}{27} - \frac{16}{9} = \frac{52}{27}[/TEX]
[TEX]= \ khi \ a=b=c=\frac{2}{3}[/TEX]
 
Top Bottom