Đặt $x=2\tan t$ suy ra [tex]\displaystyle dx=\frac{2}{\cos^2t}dt[/tex]
[tex]\displaystyle \int_{0}^{1}\frac{-2}{\sqrt{(x^{2}+4)^{3}}}dx\\=\displaystyle \int_{0}^{\arctan \frac{1}{2}}\frac{-2}{\sqrt{(4 \tan^2 t+4)^{3}}}.\frac{2}{\cos^2t}dt\\=\displaystyle \int_{0}^{\arctan \frac{1}{2}}\frac{-2.\cos ^3t}{8}.\frac{2}{\cos^2t}dt\\=\displaystyle \int_{0}^{\arctan \frac{1}{2}}\frac{-1}{2} \cos t dt\\=\displaystyle \frac{-1}{2} \sin t |^{\arctan \frac{1}{2}}_0\\=\displaystyle \frac{-1}{2\sqrt{5}}[/tex]