[tex]f(x^2)+f(1-x^2)=-2x^5+3\\\Leftrightarrow 2xf(x^2)+2xf(1-x^2)=-4x^6+6x\\\Leftrightarrow \int ^1_0(2xf(x^2)+2xf(1-x^2))dx=\int ^1_0(-4x^6+6x)dx\\x^2=t\Rightarrow 2xdx=dt\\\Leftrightarrow \int ^1_0 f(t)dt+\int^1_0 f(1-t)dt=\frac{17}{7}\\u=1-t\Rightarrow -dt=du\\\Leftrightarrow \int ^1_0 f(t)dt+\int^1_0 f(u)du=\frac{17}{7} \\\Leftrightarrow \int^1_0f(x)dx=\frac{17}{14}[/tex]
Do $f(x)$ là hàm lẻ nên [tex]\int ^1_{-1}f(x)dx=0\\\Leftrightarrow \int ^0_{-1}f(x)dx=-\int ^1_0f(x)dx=-\frac{17}{14}[/tex]