[tex]\lim(\sqrt[4]{16x^{4}+3x+1}-\sqrt{4x^{2}+2})=\lim(\sqrt[4]{16x^{4}+3x+1}-2x+2x-\sqrt{4x^{2}+2})=lim(\frac{16x^4+3x+1-16x^4}{(\sqrt[4]{16x^{4}+3x+1}+2x)(\sqrt{16x^{4}+3x+1}+4x^2)}+\frac{4x^2-4x^2-2}{2x+\sqrt{4x^2+2}})=lim(\frac{\frac{3}{x^2}+\frac{1}{x^3}}{(\sqrt[4]{16+\frac{3}{x^3}+\frac{1}{x^4}}+2)(\sqrt{16+\frac{3}{x^3}+\frac{1}{x^4}}+4)}-\frac{\frac{2}{x}}{2+\sqrt{4+\frac{2}{x^2}}})=0[/tex]