$cos(\alpha +\frac{\pi }{4}) cos\left ( \alpha -\frac{\pi }{4} \right ) +\frac{1}{2}sin^2\alpha$
$=\left ( cos\alpha cos\frac{\pi }{4} -sin\alpha sin\frac{\pi }{4}\right ) \left ( cos\alpha cos\frac{\pi }{4} +sin\alpha sin\frac{\pi }{4} \right ) +\frac{1}{2}sin^2\alpha$
$=\left ( \frac{\sqrt{2}}{2}cos\alpha -\frac{\sqrt{2}}{2}sin\alpha \right ) \left ( \frac{\sqrt{2}}{2}cos\alpha +\frac{\sqrt{2}}{2}sin\alpha \right ) +\frac{1}{2}sin^2\alpha $
$=\frac{1}{2}cos^2\alpha -\frac{1}{2}sin^2\alpha +\frac{1}{2}sin^2\alpha$ =$\frac{1}{2}cos^2\alpha$