[tex]\frac{cosa}{sina}+\frac{sina}{1+cosa}=\frac{cosa(1+cosa)+sin^2a}{sina(1+cosa)}=\frac{cosa+1}{sina(1+cosa)}=\frac{1}{sina}[/tex]
[tex]\frac{sin^2x}{sinx-cosx}-\frac{cos^2x(sinx+cosx)}{sin^2x-cos^2x}=\frac{sin^2x}{sinx-cosx}-\frac{cos^2x(sinx+cosx)}{(sinx+cosx)(sinx-cosx)}=\frac{sin^2x-cos^2x}{sinx-cosx}=sinx+cosx[/tex]
[tex](cosx+cosx.tanx)(sinx+sinx.cotx)=(cosx+cosx.\frac{sinx}{cosx})(sinx+sinx.\frac{cosx}{sinx})[/tex]
[tex]=(sinx+cosx)^2=sin^2x+cos^2x+2sinx.cosx=1+2sinx.cosx[/tex]
[tex]2cos^4x-2sin^4x+sin^4x+sin^2x.cos^2x+3sin^2x=2(cos^2x-sin^2x)(cos^2x+sin^2x)+sin^2x(sin^2x+cos^2x)+3sin^2x[/tex]
[tex]=2cos^2x-2sin^2x+sin^2x+3sin^2x=2cos^2x+2sin^2x=2[/tex]
[tex]tan^2x+2tanx.cotx+tan^2x-(tan^2x-2tanx.cotx+cot^2x)=2+2=4[/tex]