b) [tex](x\sqrt{1-y^2}+y\sqrt{1-x^2})^2=1[/tex]
[tex]\Leftrightarrow x^2+y^2-2x^2y^2+2xy\sqrt{(1-y^2)(1-x^2)}=1[/tex]
[tex]\Leftrightarrow 1-x^2-y^2+x^2y^2-2xy\sqrt{1-x^2-y^2+x^2y^2}+x^2y^2=0[/tex]
[tex]\Leftrightarrow (\sqrt{1-x^2-y^2+x^2y^2}-xy)^2=0[/tex]
[tex]\Leftrightarrow 1-x^2-y^2+x^2y^2=x^2y^2 \Leftrightarrow x^2+y^2=1[/tex]
c) [tex](x+\sqrt{x^2+2020})(y+\sqrt{y^2+2020})=2020[/tex]
[tex](x-\sqrt{x^2+2020})(x+\sqrt{x^2+2020})(y+\sqrt{y^2+2020})=2020(x-\sqrt{x^2+2020})[/tex]
[tex]\Leftrightarrow (x^2-x^2-2020)(y+\sqrt{y^2+2020})=2020(x-\sqrt{x^2+2020})[/tex]
[tex]\Leftrightarrow -2020(y+\sqrt{y^2+2020})=2020(x-\sqrt{x^2+2020})[/tex]
[tex]\Leftrightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x[/tex]
Tương tự ta cũng có [tex]x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y[/tex]
Cộng theo vế 2 phương trình: [tex]2(x+y)=0 \Leftrightarrow x+y=0[/tex]