Đặt [TEX]BC=x,CA=y,AB=z[/TEX]
Phân tích vecto: [tex]\overrightarrow{GB}=-\frac{1}{3}(\overrightarrow{BA}+\overrightarrow{BC})=-\frac{1}{3}(2\overrightarrow{BA}+\overrightarrow{AC});\overrightarrow{GC}=-\frac{1}{3}(\overrightarrow{CA}+\overrightarrow{CB})=-\frac{1}{3}(2\overrightarrow{CA}+\overrightarrow{AB})\Rightarrow \overrightarrow{GB}.\overrightarrow{GC}=\frac{1}{9}(-2AC^2-2AB^2)=-\frac{2}{9}BC^2=-\frac{2}{9}x^2[/tex]
Lại có: [tex]GB^2.GC^2=\frac{2BC^2+2AB^2-AC^2}{9}.\frac{2BC^2+2AC^2-AB^2}{9}=\frac{2x^2+2z^2-y^2}{9}.\frac{2x^2+2y^2-z^2}{9}=\frac{4x^4+2x^2(y^2+z^2)-2z^4-2y^4+5y^2z^2}{81}\Rightarrow GB.GC=\frac{\sqrt{4x^4+2x^2(y^2+z^2)-2z^4-2y^4+5y^2z^2}}{9}\Rightarrow cos(\overrightarrow{GB},\overleftarrow{GC})=\frac{-\frac{2}{9}x^2}{\frac{4x^4+2x^2(y^2+z^2)-2z^4-2y^4+5y^2z^2}{9}}=\frac{-2x^2}{\sqrt{4x^4+2x^2(y^2+z^2)-2z^4-2y^4+5y^2z^2}}[/tex]
Mà [tex]y^2+z^2=x^2[/tex] [tex]\Rightarrow cos(\overrightarrow{GB},\overrightarrow{GC})=\frac{-2x^2}{\sqrt{4x^4+2x^4-2x^4+9y^2z^2}}=\frac{-2x^2}{\sqrt{4x^4+9y^2z^2}}\leq \frac{-2x^2}{\sqrt{4x^4+\frac{9}{4}(y^2+z^2)}}=\frac{-2x^2}{\sqrt{\frac{25}{4}x^4}}=\frac{-4}{5}[/tex]
Ta có: [TEX](\overrightarrow{GB},\overrightarrow{GC})[/TEX] min khi [TEX]cos(\overrightarrow{GB},\overrightarrow{GC})[/TEX] max.
Khi đó [TEX]y=z \Leftrightarrow AB=AC=a[/TEX]