$9x^2-2=0\\\Leftrightarrow (3x-\sqrt{3})(3x+\sqrt{3})=0$
$\Leftrightarrow$ $3x-\sqrt{3}$=0 hoặc $3x-\sqrt{3}=0$
Vậy......
$x^3(x-3)+3x=1\\\Leftrightarrow x^4-3x^3+3x=1\\\Leftrightarrow x^4-3x^3+x^2-x^2+3x-1=0\\\Leftrightarrow x^2(x^2-1)-3x^3-3x^2+4x^2+3x-1=0\\\Leftrightarrow x^2(x-1)(x+1)-3x^2(x+1)+4x^2+4x-x-1=0\\\Leftrightarrow x^2(x-1)(x+1)-3x^2(x+1)+4x(x+1)-(x+1)=0\\\Leftrightarrow (x+1)(x^3-x^2-3x^2+4x-1)=0\\\Leftrightarrow (x+1)(x^3-4x^2+4x-1)=0\\\Leftrightarrow (x+1)(x^3-x^2-3x^2+4x-1)=0\\\Leftrightarrow (x+1)[x^2(x-1)-3x^2+3x+x-1]=0\\\Leftrightarrow (x+1)[x^2(x-1)-3x^2(x-1)+(x-1)]=0\\\Leftrightarrow (x+1)(x-1)(x^2-3x^2+1)=0\\\Leftrightarrow (x+1)(x-1)(-x^2+1)=0$
đến đây giải tiếp nhé.