Ta có: Tổng từ 1→n1→n1\rightarrow n là: n(n+1)2n(n+1)2\frac{n(n+1)}{2}.
⟹1+2+...+2010=2010∗20112=2021055(1)⟹1+2+...+2010=2010∗20112=2021055(1)\implies 1+2+...+2010=\frac{2010*2011}{2}=2021055(1).
1+2+...+(x−1)=(x−1)x2(2)1+2+...+(x−1)=(x−1)x2(2)1+2+...+(x-1)=\frac{(x-1)x}{2}(2).
Lấy (1)−(2)(1)−(2)(1)-(2) vế theo vế ta được x+(x+1)+...+2010=2021055−(x−1)x2x+(x+1)+...+2010=2021055−(x−1)x2x+(x+1)+...+2010=2021055-\frac{(x-1)x}{2}.
⟺2021055−x(x−1)2=202999⟹x(x−1)=3636112⟹x=1907,3659...⟺2021055−x(x−1)2=202999⟹x(x−1)=3636112⟹x=1907,3659...\iff 2021055-\frac{x(x-1)}{2}=202999\implies x(x-1)=3636112\implies x=1907,3659...
P/s: Bài này ở đây vậy bạn?