Xét dãy [tex]2020,20202020,...,\underset{2022}{\underbrace{20202020...2020}}[/tex]
Theo nguyên lí Dirichlet tồn tại ít nhất 2 số có cùng số dư khi chia 2021. Giả sử đó là [tex]\underset{m}{\underbrace{20202020...2020}},\underset{n}{\underbrace{20202020...2020}}\Rightarrow \underset{m}{\underbrace{20202020...2020}}-\underset{n}{\underbrace{20202020...2020}}\vdots 2021\Rightarrow \underset{m-n}{\underbrace{20202020...2020}}\underset{4n}{\underbrace{000..00}}\vdots 2021\Rightarrow \underset{m-n}{\underbrace{20202020...2020}}.10^{4n}\vdots 2021\Leftrightarrow \underset{m-n}{\underbrace{20202020...2020}}\vdots 2021[/tex]