mấy bài dạng câu C đặt gián tiếp bằng lượng giác sao cho khai căn được í
em xem trước giờ chị làm nốt
C. đặt [TEX]x=\sin t[/TEX] [TEX]\Rightarrow dx=\cos tdt[/TEX]
Ta được: [TEX]\displaystyle \int\sqrt{(1-x^2)^3}dx=\int\sqrt{(1-\sin ^2t)^3}\cos tdt[/TEX]
[TEX]=\displaystyle \int\sqrt{(\cos ^2t)^3}\cos tdt=\int \cos ^4tdt[/TEX]
[TEX]=\displaystyle \int \Big(\dfrac{1+\cos 2t}{2}\Big)^2dt[/TEX]
[TEX]=\displaystyle \int \dfrac{1}{4}(\cos ^22t+2\cos 2t+1)dt[/TEX]
[TEX]=\displaystyle \int \dfrac{1}{4} \Big(\dfrac{1+\cos 4t}{2}+2\cos 2t+1\Big)dt[/TEX]
[TEX]=\displaystyle \int \dfrac{1}{8}(\cos 4t+4\cos 2t+3)dt[/TEX]
[TEX]=\dfrac{1}{8}\Big(\dfrac{1}{4}\sin 4t+2\sin 2t+3t\Big)+C[/TEX]
[TEX]B=\displaystyle \int \dfrac{1}{x\sqrt{x^3+1}}dx=\displaystyle \int \dfrac{x^2}{x^3\sqrt{x^3+1}}dx[/TEX]
đặt [TEX]t = \sqrt{x^3+1} \Rightarrow x^3=t^2-1[/TEX]
[TEX]\Rightarrow 3x^2=2tdt[/TEX]
[TEX]\Leftrightarrow x^2=\dfrac{2}{3}tdt[/TEX]
[TEX]B=\displaystyle \int \dfrac{2}{3} \dfrac{t}{(t^2-1)t}dt[/TEX]
[TEX]=\dfrac{1}{3} \displaystyle \int (\dfrac{1}{t-1}-\dfrac{1}{t+1})dt[/TEX]
[TEX]=\dfrac{1}{3} (\ln|t-1|-\ln|t+1|)[/TEX]
[TEX]=\dfrac{1}{3} \ln\Big|\dfrac{t-1}{t+1}\Big|[/TEX]
A.
đặt [TEX]t = \sqrt{x^2-1} \Rightarrow x^2=t^2+1[/TEX]
[TEX]\Rightarrow 2tdt=2xdx[/TEX]
[TEX]\Leftrightarrow tdt=xdx[/TEX]
[TEX]\Leftrightarrow \dfrac{t}{x^2}dt=\dfrac{1}{x}dx[/TEX]
[TEX]A=\displaystyle \int \dfrac{t}{t(t^2+1)}dt=\displaystyle \int \dfrac{1}{t^2+1}dt[/TEX]
đặt [TEX]t=\tan \alpha[/TEX]
[TEX]dt=\dfrac{1}{\cos ^2\alpha}d\alpha[/TEX]
[TEX]A=\displaystyle \int \dfrac{1}{(\cos ^2\alpha)(\tan ^2\alpha+1)}d\alpha[/TEX]
mà[TEX] \dfrac{1}{\cos ^2\alpha}=\tan ^2\alpha+1[/TEX]
[TEX]\Rightarrow A=\int d\alpha=\alpha+C=\arctan t+C=\arctan (\sqrt{x^2-1}) + C[/TEX]