[TEX]\blue \mathbf x^2 + x.y + y^2 -x^2.y^2 = 0\\ \Leftrightarrow x^2(1-y^2)+xy+y^2=0\\ TH_1: 1-y^2=0\Leftrightarrow y=\pm 1\\ +)y=1\Rightarrow x=-1\\+)y=-1 \Rightarrow x=1\\TH_2:1-y^2\neq 0 \Leftrightarrow y\neq \pm 1\\ \Delta =(2y^2-y)^2\\ \Leftrightarrow \left[x=\frac{2y^2-2y}{2(1-y^2)}=-\frac{y}{1+y}=\frac{1}{1+y}-1(1)\\ x=\frac{-y^2}{1-y^2}=1-\frac{1}{1-y^2}(2)\right. \\ (1) \ co \ nghiem\ nguyen\\ \Leftrightarrow 1+y =\pm 1\\ (2) \ co \ nghiem\ nguyen \Leftrightarrow (1-y)(1+y)=\pm 1\\ Tu\ giai\ tiep\ nhe.[/TEX]