tìm min

V

vansang02121998

- Cách 1:

A=a22a+2008a2A=\dfrac{a^2-2a+2008}{a^2}

2008A=a22.a.2008+20082+2007a2a2\Leftrightarrow 2008A=\dfrac{a^2-2.a.2008+2008^2+2007a^2}{a^2}

2008A=(a2008)2a2+20072007\Leftrightarrow 2008A=\dfrac{(a-2008)^2}{a^2}+2007 \ge 2007

A20072008\Leftrightarrow A \ge \dfrac{2007}{2008}

- Cách 2:

A=a22a+2008a2A=\dfrac{a^2-2a+2008}{a^2}

A=12a+2008a2A=1-\dfrac{2}{a}+\dfrac{2008}{a^2}

Đặt 1a=x\dfrac{1}{a}=x, ta có

A=12x+2008x2A=1-2x+2008x^2

A=2008(x211004x+12008)A=2008(x^2-\dfrac{1}{1004}x+\dfrac{1}{2008})

Giải ra là được
 
Top Bottom