Tim min

D

donquanhao_ub

[TEX]A=x^2+15y^2+xy+8x+y + 1992[/TEX]

[TEX]A=x^2+2x(\frac{y+8}{2})+(\frac{y+8}{2})^2+15y^2-(\frac{y+8}{2})^2+y+1992[/TEX]

[TEX]A=(x+\frac{y}{2}+4)^2+\frac{59}{4}(y-\frac{6}{59})^2+1975\frac{50}{59} \geq 1975\frac{50}{59}[/TEX]

Vậy [TEX]Min A = 1975\frac{50}{59} \Leftrightarrow x = -4\frac{3}{59}; y=\frac{6}{59}[/TEX]
 
Top Bottom