Ta có:[tex]\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{3}{2} \rightarrow \frac{xy+yz+zx}{xyz}=\frac{3}{2}[/tex]
Mặt khác [tex](x-y)^2+(y-z)^2+(z-x)^2\geq 0 \rightarrow 2x^2+2y^2+2z^2-2xy+2yz+2zx\geq 0 \rightarrow x^2+y^2+z^2 \geq xy+yz+zx[/tex]
Lại có [tex]\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}= \frac{x^2+y^2+z^2}{xyz} \geq \frac{xy+yz+zx}{xyz}=\frac{3}{2}[/tex]
-> MinP=3/2 khi x=y=z =2