Tìm Max: M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}
H hoanglop7amt Học sinh Thành viên 31 Tháng một 2016 184 24 49 18 Tháng mười một 2017 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Tìm Max: M=[tex]\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}[/tex]
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Tìm Max: M=[tex]\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}[/tex]
Nữ Thần Mặt Trăng Cựu Mod Toán Thành viên TV BQT tích cực 2017 28 Tháng hai 2017 4,472 5,490 779 Hà Nội THPT Đồng Quan 18 Tháng mười một 2017 #2 hoanglop7amt said: Tìm Max: M=[tex]\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}[/tex] Bấm để xem đầy đủ nội dung ... ĐK: $x\ge 1; y\ge 4$. $M=\dfrac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}$ $\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge 2\Rightarrow \dfrac{\sqrt{x-1}}{x}\le \dfrac{1}{2}$ $\dfrac{y}{\sqrt{y-4}}=\dfrac{y-4+4}{\sqrt{y-4}}=\sqrt{y-4}+\dfrac{4}{\sqrt{y-4}}\ge 4\Rightarrow \dfrac{\sqrt{y-4}}{y}\le \dfrac{1}{4}$ $\Rightarrow M\le \dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}$ Dấu '=' xảy ra $\Leftrightarrow x=2; y=8$ (TMĐK) Reactions: Ann Lee
hoanglop7amt said: Tìm Max: M=[tex]\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}[/tex] Bấm để xem đầy đủ nội dung ... ĐK: $x\ge 1; y\ge 4$. $M=\dfrac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}$ $\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge 2\Rightarrow \dfrac{\sqrt{x-1}}{x}\le \dfrac{1}{2}$ $\dfrac{y}{\sqrt{y-4}}=\dfrac{y-4+4}{\sqrt{y-4}}=\sqrt{y-4}+\dfrac{4}{\sqrt{y-4}}\ge 4\Rightarrow \dfrac{\sqrt{y-4}}{y}\le \dfrac{1}{4}$ $\Rightarrow M\le \dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}$ Dấu '=' xảy ra $\Leftrightarrow x=2; y=8$ (TMĐK)
Ann Lee Cựu Mod Toán Thành viên 14 Tháng tám 2017 1,782 2,981 459 Hưng Yên 19 Tháng mười một 2017 #3 Cách khác: $M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}$ $=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}$ $=\frac{2\sqrt{(x-1).1}}{2x}+\frac{2\sqrt{(y-4).4}}{4y}\leq \frac{x-1+1}{2x}+\frac{y-4+4}{4y}$ (BĐT Cauchy) $=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ Dấu "=" xảy ra <=> x=2;y=8 Reactions: Dương Bii and Bonechimte
Cách khác: $M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}$ $=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}$ $=\frac{2\sqrt{(x-1).1}}{2x}+\frac{2\sqrt{(y-4).4}}{4y}\leq \frac{x-1+1}{2x}+\frac{y-4+4}{4y}$ (BĐT Cauchy) $=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ Dấu "=" xảy ra <=> x=2;y=8