cho x^2+y^2=1
tìm max của
A = 16*(x^5+y^5)-20*(x^3+y^3)+5*(x+y)
[đặt x=sinA;y=cosA]b-(
[TEX]\left{ x = sint \\ y = cos t [/TEX]
[TEX]\Rightarrow A = 16 sin^3 t( 1 - sin^2 t ) + 16 cos^3 t .( 1- cos^2 t ) - 4( sin t + cos t)( 1 - sin t . cos t) + 5 ( sint + cos t) [/TEX]
[TEX]A= 16 sin^2 t . cos^2 t ( sin t + cos t) - ( sint + cos t )( 4 - 4 sin t . cos t -5 ) [/TEX]
[TEX]A = ( sint + cos t )( 16 . sin^2 t . cos^2 t+ 4 sint . cos t + 1 ) [/TEX]
[TEX]k = sin t + cos t \Rightarrow k \in [ - \sqrt{2} ;\sqrt{2}] [/TEX]
[TEX]A = k \bigg( ( 2 + 2k^2 + \frac12 )^2 + \frac34 \bigg) [/TEX]
[TEX]\Rightarrow 2 sint . cos t = k^2 + 1[/TEX]
Do A đồng biến nên A max khi [TEX] k = \sqrt{2} [/TEX]