Tìm max + min

T

tranvanhung7997

1, A=x+15+x1A = \sqrt[]{x + 15} + \sqrt[]{x - 1}
Điều kiện: x1x \ge 1
Do x1x \ge 1 nên: (x+15)(x1)01x\sqrt[]{(x + 15)(x - 1)} \ge 0 \ge 1 - x. Dấu = tại x = 1
<=> 2(x+15)(x1)22x2\sqrt[]{(x + 15)(x - 1)} \ge 2 - 2x
<=> 2x+14+(x+15)(x1)162x + 14 + \sqrt[]{(x + 15)(x - 1)} \ge 16
<=> (x+15+x1)216(\sqrt[]{x + 15} + \sqrt[]{x - 1})^2 \ge 16
<=> x+15+x14\sqrt[]{x + 15} + \sqrt[]{x - 1} \ge 4
Dấu = tại x = 1
Vậy Min A = 4 <=> x = 1
 
C

conga222222

$\eqalign{
& \cos i: \cr
& x - 1 = \left( {x - 2} \right) + 1 \geqslant 2\sqrt {x - 2} \cr
& x + 5 = \left( {x + 1} \right) + 4 \geqslant 2\sqrt {4\left( {x + 1} \right)} = 4\sqrt {x + 1} \cr
& \to 2x + 4 \geqslant 2\sqrt {x - 2} + 4\sqrt {x + 1} \cr
& \leftrightarrow \sqrt {x - 2} + 2\sqrt {x + 1} \leqslant x + 2 \cr
& \to \sqrt {x - 2} + 2\sqrt {x + 1} - x + 2013 \leqslant x + 2 - x + 2013 = 2015 \cr
& dau = \leftrightarrow x = 3 \cr} $
 
Top Bottom