Tìm max + min

T

tranvanhung7997

1, $A = \sqrt[]{x + 15} + \sqrt[]{x - 1}$
Điều kiện: $x \ge 1$
Do $x \ge 1$ nên: $\sqrt[]{(x + 15)(x - 1)} \ge 0 \ge 1 - x$. Dấu = tại x = 1
<=> $2\sqrt[]{(x + 15)(x - 1)} \ge 2 - 2x$
<=> $2x + 14 + \sqrt[]{(x + 15)(x - 1)} \ge 16$
<=> $(\sqrt[]{x + 15} + \sqrt[]{x - 1})^2 \ge 16$
<=> $\sqrt[]{x + 15} + \sqrt[]{x - 1} \ge 4$
Dấu = tại x = 1
Vậy Min A = 4 <=> x = 1
 
C

conga222222

$\eqalign{
& \cos i: \cr
& x - 1 = \left( {x - 2} \right) + 1 \geqslant 2\sqrt {x - 2} \cr
& x + 5 = \left( {x + 1} \right) + 4 \geqslant 2\sqrt {4\left( {x + 1} \right)} = 4\sqrt {x + 1} \cr
& \to 2x + 4 \geqslant 2\sqrt {x - 2} + 4\sqrt {x + 1} \cr
& \leftrightarrow \sqrt {x - 2} + 2\sqrt {x + 1} \leqslant x + 2 \cr
& \to \sqrt {x - 2} + 2\sqrt {x + 1} - x + 2013 \leqslant x + 2 - x + 2013 = 2015 \cr
& dau = \leftrightarrow x = 3 \cr} $
 
Top Bottom