Đặt $t = \sqrt{x+2} + 2\sqrt{3-x}$
$t' = \dfrac1{2\sqrt{x+2}} - \dfrac{1}{\sqrt{3-x}}$
$t' = 0 \iff 2\sqrt{x+2} = \sqrt{3-x} \iff 4x + 8 = 3 -x \iff x = -1$
$\begin{array}{c|ccccc}
x & -2 & & -1 & & 3 \\
\hline
t' & & + & 0 & - & \\
\hline
& & & 5 & & \\
t & & \nearrow & & \searrow & \\
& 2\sqrt{5} & & & & \sqrt{5} \\
\end{array}$
$t^2 = -3x + 14 + 4\sqrt{6+x-x^2}$
pt $\iff t^2 - 14 = mt$
$\iff m = \dfrac{t^2 - 14}{t} = f(t)$
$f'(t) = \dfrac{t^2 + 14}{t^2} > 0$
$\begin{array}{c|ccccc}
t & \sqrt{5} & & 5 \\
\hline
f'(t) & & + & \\
\hline
& & & \dfrac{11}5 \\
f(t) & & \nearrow & \\
& -\dfrac{9\sqrt{5}}5 & & \\
\end{array}$
Vậy $-\dfrac{9\sqrt{5}}5 \leqslant m \leqslant \dfrac{11}5$ thì pt có nghiệm