Cho x,y,z>0 ; $x+y \le 2z$
Tìm Min của $P =\dfrac{x}{y+z} +\dfrac{y}{z+x}- \dfrac{x+y}{2z}$
Dùng Svac-xơ để làm ạ.
Đặt [TEX]\frac{x}{z}=a;\frac{y}{z}= b \Rightarrow a+b\leq 2[/TEX]
Khi đó: [TEX]P=\frac{1}{\frac{y}{x}+\frac{z}{x}}+\frac{1}{\frac{z}{y}+\frac{x}{y}}-\frac{1}{2} ( \frac{x}{z}+\frac{y}{z}) [/TEX]
[TEX]P=\frac{1}{\frac{b}{a}+\frac{1}{a}} +\frac{1}{\frac{1}{b}+\frac{a}{b}} - \frac{1}{2} (a+b) [/TEX]
[TEX]P=\frac{a+b+1}{b+1} + \frac{a+b+1}{a+1} - \frac{1}{2}(a+b)-2[/TEX]
[TEX]\geq \frac{4(a+b+1)}{a+b+2}-\frac{1}{2} (a+b)-2[/TEX]
Đặt [TEX]0 < t=a+b\leq 2[/TEX]
[TEX]\Rightarrow P\geq \frac{4t+4}{t+2} - \frac{1}{2}t - 2 = \frac{t(2-t)}{2(t+2)} \geq 0 [/TEX](do [TEX]0<t\leq2)[/TEX]
Dấu = xảy ra khi [TEX]a=b=1 \Rightarrow x=y=z[/TEX]