Cách khác:
$A=(\dfrac{1}{a^2}-1)(\dfrac{1}{b^2}-1)=\dfrac{(1-a^2)(1-b^2)}{(ab)^2}=\dfrac{1-(a^2+b^2)+(ab)^2}{(ab)^2}=1+\dfrac{1-(a^2+b^2)}{(ab)^2}=1+\dfrac{\dfrac{3}{4}+(a+b)^2-(a^2+b^2)}{(ab)^2}=1+\dfrac{\dfrac{3}{4}+2ab}{(ab)^2}=1+\dfrac{3}{4(ab)^2}+\dfrac{2}{ab}$
Mà: $\dfrac{1}{2}=a+b \ge 2\sqrt{ab}$
\Leftrightarrow $ab \le \dfrac{1}{16}$
\Rightarrow $A \ge 1+\dfrac{3}{4.\dfrac{1}{16^2}}+\dfrac{2}{\dfrac{1}{16}}=....$
Dấu "=" xảy ra \Leftrightarrow $a=b=\dfrac{1}{4}$