Ta có $\frac{x^{3}}{x^{3}+y^{3}+16z^{3}}+\frac{4}{9}+ \frac{4}{9}$ \geq $\frac{3x\sqrt[3]{16}}{\sqrt[3]{81\left(x^{3}+y^{3}+16z^{3} \right)}}$
Tương tự
$\frac{y^{3}}{x^{3}+y^{3}+16z^{3}}+\frac{4}{9}+ \frac{4}{9}$ \geq $\frac{3\sqrt[3]{16}y}{\sqrt[3]{81\left(x^{3}+y^{3}+16z^{3}\right)}}$
$\frac{16z^{3}}{x^{3}+y^{3}+16z^{3}}+\frac{1}{9}+ \frac{1}{9}$ \geq $\frac{3\sqrt[3]{16}z}{\sqrt[3]{81\left(x^{3}+y^{3} +16z^{3}\right)}}$
Cộng vế ta có :
3\geq $\frac{3\sqrt[3]{16}\left(x+y+z \right)}{\sqrt[3]{81\left(x^{3}+y^{3}+16z^{3} \right)}}$
\Leftrightarrow $\frac{x^{3}+y^{3}+16z^{3}}{\left(x+y+z \right)^{3}}$ \geq $\frac{16}{81}$
Dấu '='\Leftrightarrow $\begin{cases}
x=y=\frac{4}{9} & \text{ } \\ z=\frac{1}{9}
& \text{ }
\end{cases}$