Tìm GTNN

H

huy14112



$x+2y=1 \longrightarrow x=1-2y$

$B=x^2+2y^2$

$=(1-2y)^+2y^2$

$=1-4y+4y^2+2y^2$

$=6y^2-4y+1$

$=(\sqrt{6}.y)^2-2.(\sqrt{6}.y).\dfrac{2}{\sqrt{6}}+(\dfrac{2}{ \sqrt{6}})^2+(1-(\dfrac{2}{\sqrt{6}})^2)$

$=(\sqrt{6}y-\dfrac{4}{6})^2+\dfrac{1}{3}$ \geq $ \dfrac{1}{3}$

$Min_B=\dfrac{1}{3} \leftrightarrow y=...$


 
H

hoangtubongdem5

Giải câu a/

a) A=[TEX]x^2[/TEX]+xy+[TEX]y^2[/TEX]-3x-3y


[TEX]A = x^2 + xy + y^2 - 3x - 3y[/TEX]
[TEX]\Rightarrow 4A=4x^2 + 4xy + 4y^2 - 12x - 12y[/TEX]
[TEX]= (2x + y - 3)^2 + 3(y - 1)^2 -12 \geq -12 [/TEX]

\Rightarrow A \geq - 3

Dấu = chỉ xảy ra khi 2x + y - 3 = 0 và y -1 = 0 hay x = y = 1

Vậy Min A = - 3 khi x = y = 1
 
B

braga



$x+2y=1 \longrightarrow x=1-2y$

$B=x^2+2y^2$

$=(1-2y)^+2y^2$

$=1-4y+4y^2+2y^2$

$=6y^2-4y+1$

$=(\sqrt{6}.y)^2-2.(\sqrt{6}.y).\dfrac{2}{\sqrt{6}}+(\dfrac{2}{ \sqrt{6}})^2+(1-(\dfrac{2}{\sqrt{6}})^2)$

$=(\sqrt{6}y-\dfrac{4}{6})^2+\dfrac{1}{3}$ \geq $ \dfrac{1}{3}$

$Min_B=\dfrac{1}{3} \leftrightarrow y=...$



$1=(x+2y)^2=(x+y+y)^2\le (1+1+1)(x^2+y^2+y^2)=3(x^2+2y^2) \implies x^2+2y^2\ge \dfrac{1}{3}$
 
P

popstar1102

a,
$A=x^2+y^2+xy-3x-3y$

\Leftrightarrow$2A=2x^2+2y^2+2xy-6x-6y$

\Leftrightarrow$2A=(x+y)^2+x^2+y^2-6x-6y$

\Leftrightarrow$2A=(x+y)^2+(x-3)^2+(y-3)^2-18$ \geq -18

\RightarrowA \geq -9\Leftrightarrowx=3;y=3;x=-y
 
V

vipboycodon

Bài 1 :
$A = x^2+xy+y^2-3x-3y$
<=> $A+3 = x^2+xy+y^2-3x-3y+3$
<=> $A+3 = x^2-2x+1+y^2-2y+1+xy-x-y+1$
<=> $A+3 = (x-1)^2+(y-1)^2+(x-1)(y-1)$
Đặt $x-1 = a$ , $y-1 = b$ thì $A+3 = a^2+b^2+ab \ge 0$ (đúng)
Vậy min $A = -3$ <=> $a = b$ <=> $x = y = 1$
 
Top Bottom