$M = x^2 -5x +y^2 + xy - 4y + 2015\\=x^2+xy-5x+y^2-4y+2015\\=\left [x^2+x(y-5)+\dfrac{(y-5)^2}{4} \right ]+y^2-4y-\dfrac{(y-5)^2}{4}+2015\\=\left ( x+\dfrac{y-5}{2} \right )^2+\dfrac{4y^2-16y-y^2+10y-25}{4}+2015\\=\left ( x+\dfrac{y-5}{2} \right )^2+\dfrac{3y^2-6y-25}{4}+2015\\=\left ( x+\dfrac{y-5}{2} \right )^2+\dfrac{3(y-1)^2-28}{4}+2015\\=\left ( x+\dfrac{y-5}{2} \right )^2+\dfrac{3(y-1)^2}{4}+2008\geq 2008\Leftrightarrow \left\{\begin{matrix}
x=2\\ y=1\end{matrix}\right.\\Vậy...$