Toán 8 Tìm GTNN của các biểu thức

Cute Boy

Học sinh tiến bộ
Thành viên
28 Tháng một 2018
770
1,510
216
Tuyên Quang
THCS Chết nhiêu lần
View attachment 178436
Đề bài: Tìm GTNN của biểu thức.
e,[tex]E=2x^2+3y^2+4z^2-2(x+y+z)+2[/tex]
[tex]=(2x^2-2x+\frac{1}{2})+(3y^2-2y+\frac{1}{3})+(4z^2-2z+\frac{1}{4})+\frac{11}{12}[/tex]
[tex]=(\sqrt{2}x-\frac{1}{\sqrt{2}})^2+(\sqrt{3}y-\frac{1}{\sqrt{3}})^2+(2z-\frac{1}{2})^2+\frac{11}{12}[/tex]
Vì [tex](\sqrt{2}x-\frac{1}{\sqrt{2}})^2\geq 0[/tex]
[tex](\sqrt{3}y-\frac{1}{\sqrt{3}})^2\geq 0[/tex]
[tex](2z-\frac{1}{2})^2\geq 0[/tex]
[tex]=>(\sqrt{2}x-\frac{1}{\sqrt{2}})^2+(\sqrt{3}y-\frac{1}{\sqrt{3}})^2+(2z-\frac{1}{2})^2+\frac{11}{12}\geq \frac{11}{12}[/tex]
Vậy [tex]minE=\frac{11}{12}[/tex] với [tex]x=\frac{1}{2};y=\frac{1}{3};z=\frac{1}{4}[/tex]
d,[tex]D=2x^2+3y^2+4xy-8x-2y+18[/tex]
[tex]=(x^2-8x+16)+(x^2+4xy+4y^2)-(y^2+2y+1)+3[/tex]
[tex]=(x-4)^2+(x+2y)^2-(y+1)^2+3[/tex]
[tex]=>minA[/tex] khi [tex]x=4;x+2y=0=>y=-2[/tex]
[tex]=>minA=2[/tex] với [tex]x=4;y=-2[/tex]
f,[tex]F=2x^2+8xy+11y^2-4x-2y+6[/tex]
[tex]=(x^2-4x+4)+(x^2+8xy+16y^2)-(4x^2+2y+\frac{1}{4})+\frac{9}{4}-y^2[/tex]
[tex]=(x-2)^2+(x+4y)^2-(2y-\frac{1}{2})^2+\frac{9}{4}-y^2[/tex]
[tex]=>minC[/tex] khi [tex]x=2;y=-\frac{1}{2}[/tex]
[tex]=>minC=-\frac{1}{4}[/tex]
h,[tex]2H=(x-y)^2+(x-1)^2+(y-1)^2-1[/tex]
=>[tex]=>minH=-\frac{1}{2}[/tex] với [tex]x=y=1[/tex]
 
Last edited:

minhhoang_vip

Học sinh gương mẫu
Thành viên
16 Tháng năm 2009
1,074
773
309
27
Vũng Tàu
Bà Rịa - Vũng Tàu
ĐHBK HCM
g)
$G(x) = (x^2+y^2+z^2+2zy-2xz-2yz)+(x^2+2x+1)+(y^2-4y+4)+5\\
= (z-y-x)^2+(x-1)^2+(y-2)^2+5 $
Ta có: $\left\{\begin{matrix} (z-y-x)^2 \geq 0 , \ \forall x,y,z \in \mathbb{R} \\ (x-1)^2 \geq 0, \ \forall x \in \mathbb{R} \\ (y-2)^2 \geq 0, \ \forall y \in \mathbb{R} \end{matrix}\right.$
$\Rightarrow (z-y-x)^2+(x-1)^2+(y-2)^2+5 \geq 5, \ \forall x,y \in \mathbb{R}$
Dấu "$=$" xảy ra $\Leftrightarrow \left\{\begin{matrix} z-y-x=0 \\ x-1 = 0 \\ y-2=0 \end{matrix}\right. \\
\Leftrightarrow \left\{\begin{matrix} x=1 \\ y=2 \\ z=3 \end{matrix}\right.$
Vậy $G(x)_{min}=5 $ khi $(x,y,z)=(1;2;3)$ (hoặc $\left\{\begin{matrix} x=1 \\ y=2 \\ z=3 \end{matrix}\right.$)


h) $H(x) = x^2+y^2-xy-x+y+1$
Cách 1: $H(x)=\left ( x^2-xy+ \dfrac{y^2}{4} \right )- \left ( x- \dfrac{y}{2} \right )+ \dfrac{1}{4}+\dfrac{3}{4} \left ( y^2+\dfrac{2y}{3}+\dfrac{1}{9} \right )+\dfrac{2}{3} \\
= \left ( x^2-xy+ \dfrac{y^2}{4} \right )- 2.\left ( x- \dfrac{y}{2} \right ). \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{3}{4} \left ( y^2+\dfrac{2y}{3}+\dfrac{1}{9} \right )+\dfrac{2}{3} \\
=\left ( x-\dfrac{y}{2}-\dfrac{1}{2} \right )^2+\dfrac{3}{4} \left ( y+\dfrac{1}{3} \right ) ^2+\dfrac{2}{3}$
Ta có: $\left\{\begin{matrix} \left ( x-\dfrac{y}{2}-\dfrac{1}{2} \right ) ^2 \geq 0 , \ \forall x,y \in \mathbb{R} \\ \left ( y+\dfrac{1}{3} \right ) ^2 \geq 0, \ \forall y \in \mathbb{R} \end{matrix}\right.$
$\Rightarrow \left ( x-\dfrac{y}{2}-\dfrac{1}{2} \right ) ^2+\dfrac{3}{4} \left ( y+\dfrac{1}{3} \right ) ^2+\dfrac{2}{3} \geq \dfrac{2}{3}, \ \forall x,y \in \mathbb{R}$
Dấu "$=$" xảy ra $\Leftrightarrow \left\{\begin{matrix} x-\dfrac{y}{2}-\dfrac{1}{2}=0 \\ y+\dfrac{1}{3} = 0 \end{matrix}\right.
\Leftrightarrow \left\{\begin{matrix} x= - \dfrac{1}{3} \\ y= - \dfrac{1}{3} \end{matrix}\right.$
Vậy $H(x)_{min}=\dfrac{2}{3} $ khi $x=y= - \dfrac{1}{3}$

Cách 2: $4H(x)= 4x^2+4y^2-4xy-4x+4y+4 \\
= (2x-y-1)^2+3y^2+2y+3$
$12H(x)=3(2x-y-1)^2+9y^2+6y+9 \\
=3(2x-y-1)^2+(3y+1)^2+8$
Ta có: $\left\{\begin{matrix} (2x-y-1)^2 \geq 0 , \ \forall x,y \in \mathbb{R} \\ (3y+1)^2 \geq 0, \ \forall y \in \mathbb{R} \end{matrix}\right.$
$\Rightarrow 3(2x-y-1)^2+(3y+1)^2+8 \geq 8, \ \forall x,y \in \mathbb{R}$
Do đó $12H(x) \geq 8, \ \forall x,y \in \mathbb{R}$
hay $H(x) \geq \dfrac{2}{3}$
Dấu "$=$" xảy ra $\Leftrightarrow \left\{\begin{matrix} 2x-y-1=0 \\ 3y+1 = 0 \end{matrix}\right.
\Leftrightarrow \left\{\begin{matrix} x= - \dfrac{1}{3} \\ y= - \dfrac{1}{3} \end{matrix}\right.$
Vậy $H(x)_{min}=\dfrac{2}{3} $ khi $x=y= - \dfrac{1}{3}$
 
Last edited:
Top Bottom