View attachment 178436
Đề bài: Tìm GTNN của biểu thức.
e,[tex]E=2x^2+3y^2+4z^2-2(x+y+z)+2[/tex]
[tex]=(2x^2-2x+\frac{1}{2})+(3y^2-2y+\frac{1}{3})+(4z^2-2z+\frac{1}{4})+\frac{11}{12}[/tex]
[tex]=(\sqrt{2}x-\frac{1}{\sqrt{2}})^2+(\sqrt{3}y-\frac{1}{\sqrt{3}})^2+(2z-\frac{1}{2})^2+\frac{11}{12}[/tex]
Vì [tex](\sqrt{2}x-\frac{1}{\sqrt{2}})^2\geq 0[/tex]
[tex](\sqrt{3}y-\frac{1}{\sqrt{3}})^2\geq 0[/tex]
[tex](2z-\frac{1}{2})^2\geq 0[/tex]
[tex]=>(\sqrt{2}x-\frac{1}{\sqrt{2}})^2+(\sqrt{3}y-\frac{1}{\sqrt{3}})^2+(2z-\frac{1}{2})^2+\frac{11}{12}\geq \frac{11}{12}[/tex]
Vậy [tex]minE=\frac{11}{12}[/tex] với [tex]x=\frac{1}{2};y=\frac{1}{3};z=\frac{1}{4}[/tex]
d,[tex]D=2x^2+3y^2+4xy-8x-2y+18[/tex]
[tex]=(x^2-8x+16)+(x^2+4xy+4y^2)-(y^2+2y+1)+3[/tex]
[tex]=(x-4)^2+(x+2y)^2-(y+1)^2+3[/tex]
[tex]=>minA[/tex] khi [tex]x=4;x+2y=0=>y=-2[/tex]
[tex]=>minA=2[/tex] với [tex]x=4;y=-2[/tex]
f,[tex]F=2x^2+8xy+11y^2-4x-2y+6[/tex]
[tex]=(x^2-4x+4)+(x^2+8xy+16y^2)-(4x^2+2y+\frac{1}{4})+\frac{9}{4}-y^2[/tex]
[tex]=(x-2)^2+(x+4y)^2-(2y-\frac{1}{2})^2+\frac{9}{4}-y^2[/tex]
[tex]=>minC[/tex] khi [tex]x=2;y=-\frac{1}{2}[/tex]
[tex]=>minC=-\frac{1}{4}[/tex]
h,[tex]2H=(x-y)^2+(x-1)^2+(y-1)^2-1[/tex]
=>[tex]=>minH=-\frac{1}{2}[/tex] với [tex]x=y=1[/tex]