1. [tex]y'=\left ( (x+1)lnx \right )'=(x+1)'.lnx + (x+1).(lnx)'=lnx+1+\dfrac{1}{x}>0, \forall x\in \left [ e^2;e^5 \right ] [/tex]
Do đó y luôn đồng biến trên $[e^2; e^5]$ nên [tex]y_{min}=2(e^2+1)[/tex] và [tex]y_{max}=5(e^5+1)[/tex]
2. Bạn xem lại đoạn cần xét nhé vì đầu mút bên phải là $lnx$ không cố định, nó phải là 1 con số cụ thể chứ nhỉ?