$C=2x^2+x=2(x^2+\dfrac{1}{2}x+\dfrac{1}{16})-\dfrac{1}{8}=2(x+\dfrac{1}{4})^2-\dfrac{1}{8}\geq \dfrac{-1}{8}$
Dấu '=' xảy ra khi $x=\dfrac{-1}{4}$
Vậy...
[tex]C=2x^2+x=2(x^2+x)=2(x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16})[/tex]
[tex]=2[(x+\frac{1}{4})^2-\frac{1}{16}]=[tex]2(x+\frac{1}{4})^2-\frac{1}{8}[tex]\geq[/tex]\frac{-1}{8}[/tex]
Dấu " = " khi [TEX]2(x+\frac{1}{4})^2=0\Leftrightarrow x=\frac{-1}{4}[/TEX]
Vậy MIN C = -1/8 khi x = -1/4[/tex]