a, Xét [tex]\frac{1}{a+b}\leq \frac{1}{4}(\frac{1}{a}+\frac{1}{b}) <=>\frac{1}{a+b}\leq \frac{a+b}{4ab}<=>\frac{a+b}{4ab}-\frac{1}{a+b}\geq 0 <=>\frac{(a+b)^2-4ab}{(a+b)(4ab)}\geq 0<=>\frac{(a-b)^2}{(a-b)(4ab)}\geq0[/tex] luôn đúng
dấu bằng xẩy ra khi a=b[/tex]
b) Áp dụng câu a) ta có:
[tex]P=\Sigma \frac{1}{(x+y)+(x+z)}\leq \Sigma \frac{1}{4}(\frac{1}{x+y}+\frac{1}{x+z})=\frac{1}{2}\Sigma \frac{1}{x+y}\leq \frac{1}{2}\Sigma \frac{1}{4}(\frac{1}{x}+\frac{1}{y})=\frac{1}{4}\Sigma \frac{1}{x}=2[/tex].
Đẳng thức xảy ra khi [tex]x=y=z=\frac{3}{8}[/tex].