[TEX]\int\limits_{0}^{\frac{\pi}{4}}\frac{1}{cos x}dx = \int\limits_{0}^{\frac{\pi}{4}}\frac{cosx}{cos^2x}dx = \int\limits_{0}^{\frac{\pi}{4}}\frac{cos x}{2}(\frac{1}{1 - sin x } + \frac{1}{ 1 + sin x })dx[/TEX]
[TEX]= \frac12 ( \int\limits_{0}^{\frac{\pi}{4}}\frac{-d(1-sin x)}{ 1 - sin x} + \int\limits_{0}^{\frac{\pi}{4}}\frac{d(1+ sin x)}{ 1 + sin x} ) = .........[/TEX]