GIẢI GIÚP MÌNH CÂU NÀY VỚI
View attachment 25659
\[\begin{align}
& I=\int{\cos 2x\ln (s\text{inx}+\cos x)}dx \\
& =\int{(cosx-s\text{inx}).(cosx+s\text{inx})}\ln (s\text{inx}+\cos x)dx \\
& =\int{(cosx+s\text{inx})}\ln (s\text{inx}+\cos x)d(cosx+s\text{inx}) \\
& t=\operatorname{s}\text{inx}+\cos x \\
& I=\int{t\ln tdt}=\int{\ln td(\frac{{{t}^{2}}}{2})=\frac{1}{2}}(\frac{{{t}^{2}}}{2}\ln t-\int{\frac{{{t}^{2}}}{2}d(\ln t))=\frac{1}{2}(\frac{{{t}^{2}}}{2}}\ln t-\int{\frac{{{t}^{2}}}{2}\frac{1}{t}dt)} \\
& =\frac{1}{2}(\frac{{{t}^{2}}}{2}\ln t-\int{\frac{t}{2}dt)}=\frac{{{t}^{2}}}{4}\ln t-\frac{{{t}^{2}}}{8}+C \\
\end{align}\]