Làm giúp mình 3 bài này nha
View attachment 14942
6.
a) $AH(cot B+cot C)=AH(\dfrac{AB}{AC}+\dfrac{AC}{AB})=AH.\dfrac{AB^2+AC^2}{AB.AC}=\dfrac{AH.BC^2}{AH.BC}=BC$
b) $BC.sin B.cos B=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{BC.AH}{BC}=AH$
c) $BC.cos^2 B=BC.\dfrac{AB^2}{BC^2}=\dfrac{AB^2}{BC}=\dfrac{BH.BC}{BC}=BH$
d) Kẻ trung tuyến $AM\Rightarrow \triangle AMC$ cân tại $M\Rightarrow \widehat{MAC}=\widehat{C}$
$\Rightarrow \widehat{AMH}=\widehat{MAC}+\widehat{C}=2\widehat{C}$ (vì $\widehat{AMH}$ là góc ngoài của $\triangle AMC$ tại đỉnh $M$)
Theo HTL ta có: $sin C=\dfrac{AH}{AC};cos C=\dfrac{HC}{AC}$
$\Rightarrow 2sin C.cos C=2.\dfrac{AH}{AC}.\dfrac{HC}{AC}=\dfrac{2AH.HC}{AC^2}=\dfrac{2AH.HC}{BC.HC}=\dfrac{2AH}{2AM}=\dfrac{AH}{AM}$
Mà $sin 2C=\dfrac{AH}{AM}\Rightarrow sin 2C=2sin C.cos C$
7.
$A=sin^2 \alpha +2sin \alpha .cos\alpha -3cos^2\alpha
\\=(sin \alpha +cos\alpha )^2-4cos^2\alpha
\\=(tan\alpha .cos\alpha +cos\alpha )^2-4cos^2\alpha
\\=9cos^2\alpha -4cos^2\alpha =5cos^2\alpha
\\=\dfrac{5}{1+tan^2\alpha }=\dfrac{5}{1+2^2}=1$
8.
$a)tan\alpha +cot\alpha =2
\\\Rightarrow tan\alpha +\dfrac{1}{tan\alpha }=2
\\\Rightarrow tan^2\alpha -2tan\alpha+1=0
\\\Rightarrow (tan\alpha -1)^2=0
\\\Rightarrow tan\alpha a=1
\\\Rightarrow \alpha =45^{\circ}
\\b)7sin^2\alpha +5cos^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5(sin^2\alpha +cos^2\alpha )+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow sin^2\alpha =\dfrac{3}{4}
\\\Rightarrow sin\alpha =\dfrac{\sqrt{3}}{2}
\\\Rightarrow \alpha =60^{\circ}$