Toán Tỉ số lượng giác

Nữ Thần Mặt Trăng

Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
28 Tháng hai 2017
4,472
5,490
779
Hà Nội
THPT Đồng Quan
6.
a) $AH(cot B+cot C)=AH(\dfrac{AB}{AC}+\dfrac{AC}{AB})=AH.\dfrac{AB^2+AC^2}{AB.AC}=\dfrac{AH.BC^2}{AH.BC}=BC$
b) $BC.sin B.cos B=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{BC.AH}{BC}=AH$
c) $BC.cos^2 B=BC.\dfrac{AB^2}{BC^2}=\dfrac{AB^2}{BC}=\dfrac{BH.BC}{BC}=BH$
d) Kẻ trung tuyến $AM\Rightarrow \triangle AMC$ cân tại $M\Rightarrow \widehat{MAC}=\widehat{C}$
$\Rightarrow \widehat{AMH}=\widehat{MAC}+\widehat{C}=2\widehat{C}$ (vì $\widehat{AMH}$ là góc ngoài của $\triangle AMC$ tại đỉnh $M$)
Theo HTL ta có: $sin C=\dfrac{AH}{AC};cos C=\dfrac{HC}{AC}$
$\Rightarrow 2sin C.cos C=2.\dfrac{AH}{AC}.\dfrac{HC}{AC}=\dfrac{2AH.HC}{AC^2}=\dfrac{2AH.HC}{BC.HC}=\dfrac{2AH}{2AM}=\dfrac{AH}{AM}$
Mà $sin 2C=\dfrac{AH}{AM}\Rightarrow sin 2C=2sin C.cos C$
7.
$A=sin^2 \alpha +2sin \alpha .cos\alpha -3cos^2\alpha
\\=(sin \alpha +cos\alpha )^2-4cos^2\alpha
\\=(tan\alpha .cos\alpha +cos\alpha )^2-4cos^2\alpha
\\=9cos^2\alpha -4cos^2\alpha =5cos^2\alpha
\\=\dfrac{5}{1+tan^2\alpha }=\dfrac{5}{1+2^2}=1$
8.
$a)tan\alpha +cot\alpha =2
\\\Rightarrow tan\alpha +\dfrac{1}{tan\alpha }=2
\\\Rightarrow tan^2\alpha -2tan\alpha+1=0
\\\Rightarrow (tan\alpha -1)^2=0
\\\Rightarrow tan\alpha a=1
\\\Rightarrow \alpha =45^{\circ}
\\b)7sin^2\alpha +5cos^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5(sin^2\alpha +cos^2\alpha )+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow sin^2\alpha =\dfrac{3}{4}
\\\Rightarrow sin\alpha =\dfrac{\sqrt{3}}{2}
\\\Rightarrow \alpha =60^{\circ}$
 

Nguyễn Phúc Thiên

Học sinh chăm học
Thành viên
11 Tháng bảy 2017
303
73
61
21
TP Hồ Chí Minh
6.
a) $AH(cot B+cot C)=AH(\dfrac{AB}{AC}+\dfrac{AC}{AB})=AH.\dfrac{AB^2+AC^2}{AB.AC}=\dfrac{AH.BC^2}{AH.BC}=BC$
b) $BC.sin B.cos B=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{BC.AH}{BC}=AH$
c) $BC.cos^2 B=BC.\dfrac{AB^2}{BC^2}=\dfrac{AB^2}{BC}=\dfrac{BH.BC}{BC}=BH$
d) Kẻ trung tuyến $AM\Rightarrow \triangle AMC$ cân tại $M\Rightarrow \widehat{MAC}=\widehat{C}$
$\Rightarrow \widehat{AMH}=\widehat{MAC}+\widehat{C}=2\widehat{C}$ (vì $\widehat{AMH}$ là góc ngoài của $\triangle AMC$ tại đỉnh $M$)
Theo HTL ta có: $sin C=\dfrac{AH}{AC};cos C=\dfrac{HC}{AC}$
$\Rightarrow 2sin C.cos C=2.\dfrac{AH}{AC}.\dfrac{HC}{AC}=\dfrac{2AH.HC}{AC^2}=\dfrac{2AH.HC}{BC.HC}=\dfrac{2AH}{2AM}=\dfrac{AH}{AM}$
Mà $sin 2C=\dfrac{AH}{AM}\Rightarrow sin 2C=2sin C.cos C$
7.
$A=sin^2 \alpha +2sin \alpha .cos\alpha -3cos^2\alpha
\\=(sin \alpha +cos\alpha )^2-4cos^2\alpha
\\=(tan\alpha .cos\alpha +cos\alpha )^2-4cos^2\alpha
\\=9cos^2\alpha -4cos^2\alpha =5cos^2\alpha
\\=\dfrac{5}{1+tan^2\alpha }=\dfrac{5}{1+2^2}=1$
8.
$a)tan\alpha +cot\alpha =2
\\\Rightarrow tan\alpha +\dfrac{1}{tan\alpha }=2
\\\Rightarrow tan^2\alpha -2tan\alpha+1=0
\\\Rightarrow (tan\alpha -1)^2=0
\\\Rightarrow tan\alpha a=1
\\\Rightarrow \alpha =45^{\circ}
\\b)7sin^2\alpha +5cos^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5(sin^2\alpha +cos^2\alpha )+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow 5+2sin^2\alpha =\dfrac{13}{2}
\\\Rightarrow sin^2\alpha =\dfrac{3}{4}
\\\Rightarrow sin\alpha =\dfrac{\sqrt{3}}{2}
\\\Rightarrow \alpha =60^{\circ}$
Tại sao
[tex](Tan\alpha .cos\alpha +cos\alpha )^{2}=9cos^{2}a[/tex] vậy
 
Top Bottom