thac mac ve bai tap cua thay hinh

N

noinhobinhyen

ta biết rằng

(x+y+z)23(x2+y2+z2)=3=>x+y+z3(x+y+z)^2 \leq 3(x^2+y^2+z^2)=3 => x+y+z \leq \sqrt{3}

xy+xz+yzx2+y2+z2=1xy+xz+yz \leq x^2+y^2+z^2=1


=>MAXP=3+1<=>x=y=z=13=> MAX_P = \sqrt{3}+1 <=> x=y=z=\dfrac{1}{\sqrt{3}}
 
Top Bottom