tan2A2+tan2B2+tan2C2tan^{2} \frac{A}{2} + tan^{2} \frac{B}{2} +tan^{2} \frac{C}{2} = 1. CMR tam giác ABC đều

H

hien_vuthithanh

Cho tam giác ABC thỏa mãn tan2A2+tan2B2+tan2C2tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} = 1. CMR tam giác ABC đều


Do A,B,CA,B,C là 3 góc trong tam giác nên 0<A2,B2,C2<π2    tanA2,tanB2,tanA2>00<\dfrac{A}{2},\dfrac{B}{2},\dfrac{C}{2}< \dfrac{\pi}{2} \iff tan\dfrac{A}{2},tan\dfrac{B}{2},tan\dfrac{A}{2} >0

Áp dụng Cosi được :

tan2A2+tan2B22tanA2.tanB2tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{B}{2}

tan2B2+tan2C22tanB2.tanC2tan^{2} \dfrac{B}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{B}{2}.tan\dfrac{C}{2}

tan2A2+tan2C22tanA2.tanC2tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{C}{2}

tan2A2+tan2B2+tan2C2tanA2.tanB2+tanB2.tanC2+tanA2.tanC2\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2}

Lại có : A+B+C=πA+B+C =\pi

    A2+B2=π2C2\iff \dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}

    tan(A2+B2)=tan(π2C2)\iff tan(\dfrac{A}{2}+\dfrac{B}{2})=tan(\dfrac{\pi}{2}-\dfrac{C}{2})

    tanA2+tanB21tanA2tanB2=1tanC2\iff \dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=\dfrac{1}{ tan\dfrac{C}{2}}

    tanA2.tanB2+tanB2.tanC2+tanA2.tanC2=1\iff tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2} =1

tan2A2+tan2B2+tan2C21\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge 1

Dấu = khi tanA2=tanB2=tanC2    tan\dfrac{A}{2}=tan\dfrac{B}{2}=tan\dfrac{C}{2} \iff tam giác đều
 
Top Bottom