JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
Cho tam giác ABC thỏa mãn $tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2}$ = 1. CMR tam giác ABC đều
Do $A,B,C$ là 3 góc trong tam giác nên $0<\dfrac{A}{2},\dfrac{B}{2},\dfrac{C}{2}< \dfrac{\pi}{2} \iff tan\dfrac{A}{2},tan\dfrac{B}{2},tan\dfrac{A}{2} >0$
Áp dụng Cosi được :
$tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{B}{2}$
$tan^{2} \dfrac{B}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{B}{2}.tan\dfrac{C}{2}$
$tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{C}{2}$
$\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2}$
Lại có : $A+B+C =\pi$
$\iff \dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}$
$\iff tan(\dfrac{A}{2}+\dfrac{B}{2})=tan(\dfrac{\pi}{2}-\dfrac{C}{2})$
$\iff \dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=\dfrac{1}{ tan\dfrac{C}{2}}$
$\iff tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2} =1$
$\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge 1$
Dấu = khi $tan\dfrac{A}{2}=tan\dfrac{B}{2}=tan\dfrac{C}{2} \iff$ tam giác đều