$tan^{2} \frac{A}{2} + tan^{2} \frac{B}{2} +tan^{2} \frac{C}{2}$ = 1. CMR tam giác ABC đều

H

hien_vuthithanh

Cho tam giác ABC thỏa mãn $tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2}$ = 1. CMR tam giác ABC đều


Do $A,B,C$ là 3 góc trong tam giác nên $0<\dfrac{A}{2},\dfrac{B}{2},\dfrac{C}{2}< \dfrac{\pi}{2} \iff tan\dfrac{A}{2},tan\dfrac{B}{2},tan\dfrac{A}{2} >0$

Áp dụng Cosi được :

$tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{B}{2}$

$tan^{2} \dfrac{B}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{B}{2}.tan\dfrac{C}{2}$

$tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{C}{2} \ge 2tan\dfrac{A}{2}.tan\dfrac{C}{2}$

$\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2}$

Lại có : $A+B+C =\pi$

$\iff \dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}$

$\iff tan(\dfrac{A}{2}+\dfrac{B}{2})=tan(\dfrac{\pi}{2}-\dfrac{C}{2})$

$\iff \dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=\dfrac{1}{ tan\dfrac{C}{2}}$

$\iff tan\dfrac{A}{2}.tan\dfrac{B}{2}+tan\dfrac{B}{2}.tan\dfrac{C}{2}+tan\dfrac{A}{2}.tan\dfrac{C}{2} =1$

$\Longrightarrow tan^{2} \dfrac{A}{2} + tan^{2} \dfrac{B}{2} +tan^{2} \dfrac{C}{2} \ge 1$

Dấu = khi $tan\dfrac{A}{2}=tan\dfrac{B}{2}=tan\dfrac{C}{2} \iff$ tam giác đều
 
Top Bottom