N
nkok23ngokxit_baby25
(*)$S+m =n; S_n =m$Trong một cấp số cộng ta đặt $ S_{k} = U_{1} + U_{2} + U_{3} + ... + U_{k} $
a, cho biết $ S_{m}=n $ và $S_{n}=m$ với ( m khác n ) . Hãy tính $S_{m+n}$
b, cho biết $ S_{m} = S_{n} $ với ( m khác n ) . Hãy tính $S_{m+n}$
$$S_m = \dfrac{m}{2}.[ 2.U_1 + (m-1).d ]$$
$$S_n = \dfrac{n}{2}.[ 2.U_1 + (n-1).d ]$$
$$\Longleftrightarrow\dfrac{m}{2}.[ 2U_1 + (m-1).d ] - \dfrac{n}{2}.[ 2U_1 + (n-1).d ] = n - m$$
$$\Longleftrightarrow {2U_1.(m-n) + d.[ m.(m-1) - n.(n-1) ]} = 2(n-m)$$
$$\Longleftrightarrow ...................................................$$
$$\Longleftrightarrow (m-n).[2U_1 + d.(1- m - n ) - 2] = 0$$
m # n
$$ \Longleftrightarrow d = \dfrac{2.(1-U_1)}{1 - m -n}$$
$$\Longleftrightarrow S_{m+n} = \dfrac{m+n}{2}.[ 2U_1 + (m + n - 1).\frac{2.(1-U_1)}{m+n-1} ]$$
$$\Longleftrightarrow S_{m+n} = -m-n$$
(*) $S_m = S_n$
$$\Longleftrightarrow \dfrac{m}{2}.[ 2U_1 + (m-1).d ] = \dfrac{n}{2}.[ 2U_1 + (n-1).d ] $$
$$\Longleftrightarrow .......................$$
$$\Longleftrightarrow (m-n).[ 2U_1 + d.(m+n-1) ] = 0$$
m # n
$$\Longleftrightarrow d = \dfrac{-2.U_1}{m+n-1}$$
$$\Longleftrightarrow S_{m+n} = \dfrac{m+n}{2}.[ 2U_1 + (m+n-1).\frac{-2.U_1}{m+n-1}]$$
$$\Longleftrightarrow S_{m+n} = 0$$
Last edited by a moderator: