a giúp e câu này nữa
8 VAF [tex]\sqrt{15}+\sqrt{17}[/tex]
Ta có:
$4-\sqrt{15}=(4-\sqrt{15})(4+\sqrt{15})\dfrac{1}{4+\sqrt{15}}=\dfrac{1}{4+\sqrt{15}}$
$\sqrt{17}-4=(\sqrt{17}-4)(\sqrt{17}+4)\dfrac{1}{\sqrt{17}+4}=\dfrac{1}{\sqrt{17}+4}$
$4+\sqrt{15}<\sqrt{17}+4\\...$
Hoặc ta có cách khác:
$\sqrt{15}<\sqrt{15,015625}=\sqrt{(3,875)^2}=3,875$
$\sqrt{17}<\sqrt{17,015625}=\sqrt{(4,125)^2}=4,125$
$\Rightarrow \sqrt{15}+\sqrt{17}<3,875+4,125=8$