A
a4leloi
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
I. RÚT GỌN:
1, [TEX](2+\sqrt{3})(\sqrt{7-4\sqrt{3}})[/TEX]
2, [TEX]5-2\sqrt{6}+\sqrt{2}(\sqrt{3})[/TEX]
3, [TEX]\sqrt{4}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}+\sqrt{2}[/TEX]
4, [TEX]3+2\sqrt{2}+\sqrt{6-4\sqrt{2}[/TEX]
5, [TEX]2+\sqrt{17-\sqrt{4\sqrt{9+4\sqrt{5}}}}[/TEX]
6, [TEX]\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}[/TEX]
7, [TEX]\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}[/TEX]
8, [TEX]\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}[/TEX]
9, [TEX]\sqrt{x+2\sqrt{x-1}}-\sqrt{x-1}[/TEX]
10, [TEX]1-\sqrt{x-2\sqrt{x-1}}+\sqrt{x-1}[/TEX]
11, [TEX]\sqrt{7-2\sqrt{6}}-\sqrt{7+2\sqrt{6}}[/TEX]
12, [TEX]\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}} \forall{x}>1[/TEX]
13, [TEX]\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}} \forall{x}>\frac{1}{2}[/TEX]
14, [TEX]\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2+\sqrt{3}+\sqrt{4}}[/TEX]
II. CM:
1,[TEX]\frac{x^2+5}{\sqrt{x^2+4}>2[/TEX]
2, [TEX](\sqrt{(a+c)(b+d)}\geq\sqrt{ab}+\sqrt{cd}[/TEX] với a,b,c,d >0
3, [TEX]|ac+bd|\leq(\sqrt{(a^2+b^2)(c^2+d^2)}[/TEX]
1, [TEX](2+\sqrt{3})(\sqrt{7-4\sqrt{3}})[/TEX]
2, [TEX]5-2\sqrt{6}+\sqrt{2}(\sqrt{3})[/TEX]
3, [TEX]\sqrt{4}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}+\sqrt{2}[/TEX]
4, [TEX]3+2\sqrt{2}+\sqrt{6-4\sqrt{2}[/TEX]
5, [TEX]2+\sqrt{17-\sqrt{4\sqrt{9+4\sqrt{5}}}}[/TEX]
6, [TEX]\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}[/TEX]
7, [TEX]\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}[/TEX]
8, [TEX]\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}[/TEX]
9, [TEX]\sqrt{x+2\sqrt{x-1}}-\sqrt{x-1}[/TEX]
10, [TEX]1-\sqrt{x-2\sqrt{x-1}}+\sqrt{x-1}[/TEX]
11, [TEX]\sqrt{7-2\sqrt{6}}-\sqrt{7+2\sqrt{6}}[/TEX]
12, [TEX]\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}} \forall{x}>1[/TEX]
13, [TEX]\sqrt{2x+\sqrt{4x-1}}-\sqrt{2x-\sqrt{4x-1}} \forall{x}>\frac{1}{2}[/TEX]
14, [TEX]\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2+\sqrt{3}+\sqrt{4}}[/TEX]
II. CM:
1,[TEX]\frac{x^2+5}{\sqrt{x^2+4}>2[/TEX]
2, [TEX](\sqrt{(a+c)(b+d)}\geq\sqrt{ab}+\sqrt{cd}[/TEX] với a,b,c,d >0
3, [TEX]|ac+bd|\leq(\sqrt{(a^2+b^2)(c^2+d^2)}[/TEX]
Last edited by a moderator: