a) [tex]P=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2(\sqrt{x}+1)=x-\sqrt{x}+1[/tex]
b) [tex]P=x-\sqrt{x}+1=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}[/tex]
c) [tex]Q=\frac{2\sqrt{x}}{x-\sqrt{x}+1}=\frac{2y}{y^2-y+1}(y=\sqrt{x}\geq 0)\Rightarrow Qy^2-(Q+2)y+Q=0[/tex]
Để phương trình ẩn y có nghiệm thì [tex]\Delta =(Q+2)^2-4Q.Q=-3Q^2+4Q+4\geq 0[/tex]
Lại có: [tex]x-\sqrt{x}+2> 0\Rightarrow Q\geq 0\Rightarrow 0\leq Q\leq 2\Rightarrow Q\in \left \{ 0,1,2 \right \}[/tex]
Thay vào tìm x.