ĐKXĐ: $x \geq 0$ $x \ne 1$
[tex]A=\frac{15\sqrt{x}-11}{(\sqrt{x}+3)(\sqrt{x}-1)}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}=\frac{15\sqrt{x}-11-(3\sqrt{x}-2)(\sqrt{x}+3)-(2\sqrt{x}+3)(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}=\frac{-5x+7\sqrt{x}-2}{(\sqrt{x}+3)(\sqrt{x}-1)}=\frac{(1-\sqrt{x})(5\sqrt{x}-2)}{(\sqrt{x}+3)(\sqrt{x}-1)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}[/tex]
[TEX]A-\frac{2}{3}[/TEX]=[tex]\frac{2-5\sqrt{x}}{\sqrt{x}+3}-\frac{2}{3}=\frac{6-15\sqrt{x}-2\sqrt{x}-6}{3(\sqrt{x}+3)}=\frac{-17\sqrt{x}}{3(\sqrt{x}+3)}[/tex]
tử $\leq 0$
mẫu >0
=>$A-\frac{2}{3} \leq 0$
=>$A \leq \frac{2}{3}$