We have:
$(a+b+c)^2-(a-b-c)^2+(b-c-a)^2+(c-a-b)^2=a^2+b^2+c^2+2(ab+bc+ca)-(a^2+b^2+c^2-2ab-2ac+2bc)+(c^2+a^2+b^2-2ac-2bc+2ab)=2a^2+4ab+4ac+2b^2-4bc+2c^2$
We have:
$(a+b+c)^2-(a-b-c)^2+(b-c-a)^2+(c-a-b)^2=a^2+b^2+c^2+2(ab+bc+ca)-(a^2+b^2+c^2-2ab-2ac+2bc)+(c^2+a^2+b^2-2ac-2bc+2ab)=2a^2+4ab+4ac+2b^2-4bc+2c^2$
We have:
$(a+b+c)^2-(a-b-c)^2+(b-c-a)^2+(c-a-b)^2=a^2+b^2+c^2+2(ab+bc+ca)-(a^2+b^2+c^2-2ab-2ac+2bc)+(c^2+a^2+b^2-2ac-2bc+2ab)=2a^2+4ab+4ac+2b^2-4bc+2c^2$