Rút gọn biểu thức chứa căn
5.
a) ĐK:
a>0;b>0;a=b
b)
C=a−b(a−b)2−abab(a+b)=a−b−a−b=−2b
⇒⋯
6.
a) ĐK:
x>0;x=9
$D=\dfrac{\sqrt x(\sqrt x-3)-(x+9)}{(\sqrt x+3)(\sqrt x-3)}:\dfrac{3\sqrt x+1-(\sqrt x-3)}{\sqrt x(\sqrt x-3)}
\\=\dfrac{-3\sqrt x-9}{(\sqrt x+3)(\sqrt x-3)}.\dfrac{\sqrt x(\sqrt x-3)}{2\sqrt x+4}
\\=\dfrac{-3(\sqrt x+3)}{(\sqrt x+3)(\sqrt x-3)}.\dfrac{\sqrt x(\sqrt x-3)}{2(\sqrt x+2)}
\\=\dfrac{-3\sqrt x}{2(\sqrt x+2)}$
b)
D<−1⇔2(x+2)−3x+1<0⇔2(x+2)4−x<0⇔4−x<0⇔x>16
7.
a) ĐK:
x>0;x=1
$A=\dfrac{(\sqrt x-1)^2-(\sqrt x+1)^2}{(\sqrt x+1)(\sqrt x-1)}.\dfrac{(1-x)^2}{4x}
\\=\dfrac{-4\sqrt x}{(\sqrt x+1)(\sqrt x-1)}.\dfrac{(\sqrt x+1)(\sqrt x-1)(x-1)}{4x}
\\=\dfrac{1-x}{\sqrt x}$
b)
xA>2⇔x1−x−2>0⇔x1−3x>0⇔1−3x>0⇔0<x<31
8.
a) ĐK:
x=−1;x=3
$B=\dfrac{(2x-3)(x^2-2x+1-4)}{(x+1)^2(x-3)}=\dfrac{(2x-3)(x^2-2x-3)}{(x+1)^2(x-3)}
\\=\dfrac{(2x-3)(x+1)(x-3)}{(x+1)^2(x-3)}=\dfrac{2x-3}{x+1}$
b)
B>1⇔x+12x−3−1>0⇔x+1x−4>0
⇔{x−4>0x+1>0 or {x−4<0x+1<0
⇔{x>4x>−1 or {x<4x<−1
⇔x>4 or x<−1
9.
a) ĐK:
x=0;x=±2;x=3
$M=\dfrac{-(x+2)^2-4x^2+(x-2)^2}{(x-2)(x+2)}:\dfrac{-x(x-3)}{x^2(x-2)}
\\=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{(x-2)(x+2)}:\dfrac{-(x-3)}{x(x-2)}
\\=\dfrac{-4x^2-8x}{(x-2)(x+2)}.\dfrac{-x(x-2)}{x-3}
\\=\dfrac{-4x(x+2)}{(x-2)(x+2)}.\dfrac{-x(x-2)}{x-3}
\\=\dfrac{4x^2}{x-3}$
b)
∣x−5∣=2⇔x−5=±2⇔x=7⇒M=7−34.72=49
10.
a) ĐK:
x>0;x=1
$C=\dfrac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\dfrac{2(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1}
\\=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1$
b)
C=x−x+1=(x−x+41)+43=(x−21)2+43≥43
Dấu '=' xảy ra khi
x=41
11.
a) ĐK:
x=−3;x=2
$D=\dfrac{(x+2)(x-2)-(x+3)-5}{(x+3)(x-2)}=\dfrac{x^2-4-x-3-5}{(x+3)(x-2)}
\\=\dfrac{x^2-x-12}{(x+3)(x-2)}=\dfrac{(x+3)(x-4)}{(x+3)(x-2)}=\dfrac{x-4}{x-2}$
b)
x=2+32=4−32(2−3)=4−23=(3−1)2=3−1
⇒D=3−33−5=3−9(3−5)(3+3)=−6−12−23=36+3
c) $D=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}
\\D\in \mathbb{Z}\Leftrightarrow \dfrac{2}{x-2}\in \mathbb{Z}\Leftrightarrow (x-2)\in Ư(2)=\left \{ \pm 1;\pm 2 \right \}\Leftrightarrow \cdots$