Rút gọn biểu thức chứa căn
5.
a) ĐK: $a>0;b>0;a\neq b$
b) $C=\dfrac{(\sqrt a-\sqrt b)^2}{\sqrt a-\sqrt b}-\dfrac{\sqrt{ab}(\sqrt a+\sqrt b)}{\sqrt{ab}}=\sqrt a-\sqrt b-\sqrt a-\sqrt b=-2\sqrt b$
$\Rightarrow \cdots$
6.
a) ĐK: $x>0;x\neq 9$
$D=\dfrac{\sqrt x(\sqrt x-3)-(x+9)}{(\sqrt x+3)(\sqrt x-3)}:\dfrac{3\sqrt x+1-(\sqrt x-3)}{\sqrt x(\sqrt x-3)}
\\=\dfrac{-3\sqrt x-9}{(\sqrt x+3)(\sqrt x-3)}.\dfrac{\sqrt x(\sqrt x-3)}{2\sqrt x+4}
\\=\dfrac{-3(\sqrt x+3)}{(\sqrt x+3)(\sqrt x-3)}.\dfrac{\sqrt x(\sqrt x-3)}{2(\sqrt x+2)}
\\=\dfrac{-3\sqrt x}{2(\sqrt x+2)}$
b) $D<-1\Leftrightarrow \dfrac{-3\sqrt x}{2(\sqrt x+2)}+1<0\Leftrightarrow \dfrac{4-\sqrt x}{2(\sqrt x+2)}<0\Leftrightarrow 4-\sqrt x<0\Leftrightarrow x>16$
7.
a) ĐK: $x>0;x\neq 1$
$A=\dfrac{(\sqrt x-1)^2-(\sqrt x+1)^2}{(\sqrt x+1)(\sqrt x-1)}.\dfrac{(1-x)^2}{4x}
\\=\dfrac{-4\sqrt x}{(\sqrt x+1)(\sqrt x-1)}.\dfrac{(\sqrt x+1)(\sqrt x-1)(x-1)}{4x}
\\=\dfrac{1-x}{\sqrt x}$
b) $\dfrac{A}{\sqrt x}>2\Leftrightarrow \dfrac{1-x}{x}-2>0\Leftrightarrow \dfrac{1-3x}{x}>0\Leftrightarrow 1-3x>0\Leftrightarrow 0<x<\dfrac13$
8.
a) ĐK: $x\neq -1;x\neq 3$
$B=\dfrac{(2x-3)(x^2-2x+1-4)}{(x+1)^2(x-3)}=\dfrac{(2x-3)(x^2-2x-3)}{(x+1)^2(x-3)}
\\=\dfrac{(2x-3)(x+1)(x-3)}{(x+1)^2(x-3)}=\dfrac{2x-3}{x+1}$
b) $B>1\Leftrightarrow \dfrac{2x-3}{x+1}-1>0\Leftrightarrow \dfrac{x-4}{x+1}>0$
$\Leftrightarrow \left\{\begin{matrix}x-4>0\\ x+1>0\end{matrix}\right. \ or \ \left\{\begin{matrix}x-4<0\\ x+1<0\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}x>4\\ x>-1\end{matrix}\right. \ or \ \left\{\begin{matrix}x<4\\ x<-1\end{matrix}\right.$
$\Leftrightarrow x>4 \ or \ x<-1$
9.
a) ĐK: $x\neq 0;x\neq \pm 2;x\neq 3$
$M=\dfrac{-(x+2)^2-4x^2+(x-2)^2}{(x-2)(x+2)}:\dfrac{-x(x-3)}{x^2(x-2)}
\\=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{(x-2)(x+2)}:\dfrac{-(x-3)}{x(x-2)}
\\=\dfrac{-4x^2-8x}{(x-2)(x+2)}.\dfrac{-x(x-2)}{x-3}
\\=\dfrac{-4x(x+2)}{(x-2)(x+2)}.\dfrac{-x(x-2)}{x-3}
\\=\dfrac{4x^2}{x-3}$
b) $|x-5|=2\Leftrightarrow x-5=\pm 2\Leftrightarrow x=7\Rightarrow M=\dfrac{4.7^2}{7-3}=49$
10.
a) ĐK: $x>0;x\neq 1$
$C=\dfrac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\dfrac{2(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1}
\\=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1$
b) $C=x-\sqrt x+1=(x-\sqrt x+\dfrac14)+\dfrac 34=(\sqrt x-\dfrac12)^2+\dfrac 34\geq \dfrac 34$
Dấu '=' xảy ra khi $x=\dfrac14$
11.
a) ĐK: $x\neq -3;x\neq 2$
$D=\dfrac{(x+2)(x-2)-(x+3)-5}{(x+3)(x-2)}=\dfrac{x^2-4-x-3-5}{(x+3)(x-2)}
\\=\dfrac{x^2-x-12}{(x+3)(x-2)}=\dfrac{(x+3)(x-4)}{(x+3)(x-2)}=\dfrac{x-4}{x-2}$
b) $x=\sqrt{\dfrac{2}{2+\sqrt{3}}}=\sqrt{\dfrac{2(2-\sqrt{3})}{4-3}}=\sqrt{4-2\sqrt{3}}=\sqrt{(\sqrt{3}-1)^2}=\sqrt{3}-1$
$\Rightarrow D=\dfrac{\sqrt{3}-5}{\sqrt{3}-3}=\dfrac{(\sqrt{3}-5)(\sqrt{3}+3)}{3-9}=\dfrac{-12-2\sqrt 3}{-6}=\dfrac{6+\sqrt{3}}{3}$
c) $D=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}
\\D\in \mathbb{Z}\Leftrightarrow \dfrac{2}{x-2}\in \mathbb{Z}\Leftrightarrow (x-2)\in Ư(2)=\left \{ \pm 1;\pm 2 \right \}\Leftrightarrow \cdots$