* Các bài tập cơ bản em có thể xem ở đây:
https://diendan.hocmai.vn/threads/chuyen-de-phuong-trinh-luong-giac.711831/
Bài 3:
$(cos x + 1) (cos 2x - m cos x) = msin^2 x \Leftrightarrow (cos x + 1) cos 2x - mcos x = m(sin^2 x + cos^2 x) = m \Leftrightarrow (cos x + 1) (cos 2x - m) = 0$ (*)
Nếu đặt t = $cos x$ thì ta có (*) trở thành: (t + 1) (2t^2 - 1 - m) = 0
Tới đây:
t = -1, tức là x = -pi + k2pi (không thuộc đoạn yêu cầu) như vậy để nghiệm nằm trong đoạn yêu cầu thì bài toán trở thành tìm m để t thuộc [$-\frac{1}{2}; 1$] để 2t^2 - 1 - m = 0 thỏa mãn