View attachment 29139
moi nguoi giup mk 2 bai nay vs. mai mk kiem tra roi
2.
a) Kẻ $BI\perp AD,CK\perp AD$
$\triangle ABI$ vuông tại $I\Rightarrow BI=AB.\sin BAI=AB.\sin 45^{\circ}$
$\triangle ACK$ vuông tại $K\Rightarrow CK=AC.\sin CAK=AC.\sin 45^{\circ}$
Ta có: $S_{ABD}=\dfrac12AD.BI=\dfrac12AD.AB.\sin 45^{\circ}$
$\Rightarrow 2S_{ABD}=AB.AD.\sin 45^{\circ}$
Tương tự ta cũng có: $2S_{ACD}=AC.AD.\sin 45^{\circ}$
$\Rightarrow 2S_{ABC}=AD.\sin 45^{\circ}(AB+AC)=\dfrac{AD}{\sqrt 2}(AB+AC)$
Mà $2S_{ABC}=AB.AC\Rightarrow \sqrt 2.AB.AC=AD(AB+AC)$
$\Rightarrow \dfrac{\sqrt 2}{AD}=\dfrac1{AB}+\dfrac1{AC}$ (đpcm)
b) $\widehat{BAC}=60^{\circ}$
$4S_{ABC}=AB.AC.BAC=2.AB.AC.\sin 60^{\circ}=AB.AC.\sqrt 3$
$4(S_{ABD}+S_{ACD})=2AD.\sin 30^{\circ}(AB+AC)=AD(AB+AC)$
$\Rightarrow AB.AC.\sqrt 3=AD(AB+AC)$
$\Rightarrow \dfrac{\sqrt 3}{AD}=\dfrac1{AB}+\dfrac1{AC}$
cmtt: Với $\widehat{BAC}=120^{\circ}$ thì $\dfrac1{AD}=\dfrac1{AB}+\dfrac1{AC}$
c) Giả sử $AB<AC$
$\Rightarrow 2S_{ABC}=2ACE-2S_{ABE}$
$\Rightarrow AB.AC=AE.\sin 45^{\circ}(AC-AB)=\dfrac{AE}{\sqrt 2}(AC-AB)$
$\Rightarrow \dfrac{\sqrt 2}{AE}=\dfrac1{AB}-\dfrac1{AC}$
P/s: Lần sau ghi dấu vào bạn nhé.^^