1.Nhân 2 vế của (1) cho 2cos(x/2)- DKXD: cos(x/2) khác 0
ta có:
2sin(5x/2)cos(x/2) = 5cos^3(x).2sin(x/2).cos(x/2)
<=> sin3x + sin2x = 5cos^3(x).sinx
<=> 5cos^3(x).sinx - sin3x - sin2x = 0
<=> 5cos^3(x).sinx + 4sin^3(x) - 3sinx - 2sinx.cosx = 0
<=> sinx(5cos^3x + 4sin^2x - 3 - 2cosx) = 0
<=> 2sin(x/2).cos(x/2).[5cos^3x + 4(1 - cos^2x) - 3 - 2cosx] = 0
<=> sin(x/2)(5cos^3x - 4cos^2x - 2cosx + 1) = 0 (vì cos(x/2) khác 0)
<=> sin(x/2)(cosx - 1)(5cos^2x + cosx - 1) = 0
<=> sin(x/2) = 0 => x/2 = kpi => x = 2kpi
hoặc cosx = 1 => x = 2kpi
hoặc 5cos^2x + cosx - 1 = 0 (2)
(2) <=> cosx = - (1 + căn21)/10 .........
hoặc cosx = (căn21 - 1)/10.............
do mình bận nên chỉ giải được 1 câu thui